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Abstract—In multilayer microwave integrated circuits such as
low-temper ature co-fired ceramics or multilayered printed circuit
boards, waveguide-like structures can be fabricated by using
periodic metallic via-holes referred to as substrate integrated
waveguide (SIW). Such SIW structures can largely preserve
the advantages of conventional rectangular waveguides such as
high-Q factor and high power capacity. However, they are subject
to leakage due to periodic gaps, which potentially resultsin wave
attenuation. Therefore, such a guided-wave modeling problem
becomes a very complicated complex eigenvalue problem. Since
the SIW are bilaterally unbounded, absorbing boundary con-
ditions should be deployed in numerical algorithms. This often
leads to a difficult complex root-extracting problem of a tran-
scend equation. In this paper, we present a novel finite-difference
frequency-domain algorithm with a perfectly matched layer and
Floguet’stheorem for the analysis of SIW guided-wave problems.
In this scheme, the problem is converted into a generalized matrix
eigenvalue problem and finally transformed to a standard matrix
eigenvalue problem that can be solved with efficient subroutines
available. Thisapproach has been validated by experiment.

Index Terms—Eigenvalue problem, finite difference frequency
domain (FDFD), open periodic structure, perfectly matched layer
(PML), substrate integrated waveguide (SIW).

I. INTRODUCTION

MICROWAVE system generally requires the use of many

different technologies to achieve the preplanned perfor-
mance athough integrated planar circuits such as monolithic
microwave integrated circuits (MMICs) are still the mainstream
building blocks. Active devices in the form of chips are often
surface mounted on a planar carrier substrate while high-@Q pas-
sive components such as a diplexer and filter are usually de-
signed on the basis of rectangular waveguide or other nonplanar
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Via hole

Fig. 1. Configuration of SIW synthesized using metallic via-hole arrays.

technologies. The concept of integrated rectangular waveguide
has recently been studied and developed [1]-{4]. The idea of
synthesizing nonradiative dielectric (NRD) guides and other
nonplanar guided-wave structures in planar form on a single
substrate leads to the design and development of low-cost mil-
limeter-wave integrated circuits (1Cs) and systems [5]. In this
way, a system can be integrated even in a package [i.e., system
on package (SOP)], reducing size, weight, and cost, and greatly
enhancing manufacturing repeatability and reliability. Fig. 1
shows the structure of a substrate integrated waveguide (SIW)
that is synthesized with linear arrays of metalic via-holes on
a low-loss substrate [e.g., low-temperature co-fired ceramic
(LTCQ)].

Since the bilateral walls of such a periodic waveguide
formed are laterally open, absorbing boundary conditions
(ABCs) should be used in numerical agorithms for modeling
this kind of structure. This often results in a difficult complex
root-extracting problem of a transcend equation, which is also
a very tedious procedure. Accurate prediction of propagation
characteristics of such periodic structures is essentia in any
successful design of SIW-based circuits and systems. A variety
of numerical techniques have been used to analyze periodic
structure problems. Basically, there are two groups of numer-
ical technique, i.e., 1) methods that determine the propagation
constants of Floguet modes from a transcend equation [6], [7]
and 2) methods that determine the propagation constant of
Floguet modes on the basis of classical eigenvalues of a matrix
[8]-{11].

The finite-difference frequency-domain (FDFD) method has
advantages to handle periodic structures with complicated ge-
ometries and anisotropy. When the existing FDFD method is
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used to calculate the propagation constant, roots of the eigen-
value equation arerelated to frequenciesfor agiven value of the
propagation constant [8], [11]. As a result, the existing FDFD
method is not suitable for modeling complex propagation con-
stant problems, particularly for the analysis of periodic struc-
tures [12], [13].

In this paper, we propose a FDFD algorithm that can model
periodic structures with complicated geometries and ani sotropy.
By the use of Floquet’s theorem for periodic structures on elec-
tric and magnetic field boundaries, the computational domain
is restricted to a single period. The open periodic propagation
problem can be solved by introduce a perfectly matched layer
(PML) ABC, which yields an eigenvalue problem after elimi-
nating the longitudinal field components. Different from the ex-
isting finite-difference (FD) methods, the roots of an eigenvalue
equation are directly the propagation constantsfor agiven value
of frequency. With this method, open SIW periodic structures
have been modeled, and a complex eigenvalue of the propaga-
tion problem has been obtained. Numerical resultsare compared
with measurements in the frequency range of 26.5-40 GHz.

Il. FORMULATION OF THE EIGENVALUE-BASED FDFD

According to the Flogquet's theorem for periodic structures
[14], electric and magnetic fields for the periodic guided waves
can be expressed as

G(r,y,2) = g(w,y,2)e” " @

where v is the propagation constant (v = « + j3), g(z,y, )
is a periodic function with respect to » and represents the pe-
riodic functions of electric field e(z,y, z), or magnetic field
h(x,y,2), G(z,y, 2) representselectricfield E(z, v, 2) or mag-
netic field H(z, y, z). To simulate the open periodic structures
inthe z- and y-directions, aPML ABCisintroduced. Maxwell’s
curl equations can be written in a split form [15], where each
component of electromagnetic fields in split into two partsin
the PML medium. In Cartesian coordinates, the six field com-
ponents yield 12 subcomponents. Although the proposed ap-
proach is applicable to a general anisotropic type of periodic
guided structures, the following derivation will belimited to the
case of electric anisotropic mediawith diagonal dielectric con-
stant tensor for thesimplicity of illustration. Substituting (1) into
Maxwell equations with a split form and replacing the deriva-
tive with respect to ¢ by jw yields

a(ezaz + ezy)

jwuohxy + O—; (‘T)hwy = - ay (Za)
) de,. + eyn
Jwpohg, = % - ’V(Cyz + Cya:)
(2b)
. Oepy + €52

(20)
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Iezw + ezy)

Jertohye 03wy = 2 (2d)
Jotohes + 03 (2 ey = ~ Xt ) (29
oy + (2 by = A2t L 0] (26)
jmww+%@mwzﬁkg?ﬁz (20)
Jwezey, + o (x)e,, = —w + v(hyz + hyz)

(2h)

O(hay + haz)

jweycyz + Uz(y)eyz = - ’V(hwy + hazz)

Oz
(2)
j Ihzw + o, _
Jweyeys + o (Y)eys = _% (2)
jCUEZCza: + O'Q;(Z)Cza: = M (2k)

X

a hﬂ?’l ha:z

ngzezy + O—y(z)ezy = —(Jai;_) (2|)

where ¢ and o* denote the electric conductivity and magnetic
loss, respectively, and they satisfy theimpedance matching con-
dition [16]. Next, we combine the electromagnetic fieldswith a
split form and decrease the number of variables. Furthermore,
wefindthat if thelongitudinal components (e, and i) areelim-
inated, the guided-wave problem can be transformed into agen-
eralized eigenvalues problem. This step not only decreases the
number of variables further, but also resultsin an easily solved
eigenvalue problem. From (1) and (2), we can obtain (see the
Appendix)

Ohy  jwey +0-(y) 1 A%e,
oz Jwey + 02(y) " jwiig +of " dxdy
juwe, +0.(1)
Jwey + ow(y)

Yhe =

— (jwey +0:(y)ey +
1 826y
Jwpo + o O

oh, .
aZy + (70.)633 + O—Z(‘T))ea: -

(33)

jwey, + o.(x)
Jweg + oylx)
jweg + 0.(x)
Jwes + oylx)

’Yhy =

1 A%,

Cjwpo+or Oy

1 e,

jwpo + 0% dxdy

_ Jwio 1 9*hy

T = Gope+or jwe. +0,(z) dedy
JWhto 1 9?h, e,
jwpo + 0t jwe, +o5(z) 022 | 9z

. Jwito 1 &*h.,

ey = —Jwpohs + Jwio + 0 jwe. + oy(z) Oy2
JWhto 1 9%h, dey,

J— . - y
Jwpo + 0} jwe. +oz(z) Oxdy + Oz’

(3b)

+ ijOhy

(3¢)

(3d)
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Fig. 2. Yee' sthree-dimensional lattice.

AsshowninFig. 2, if uniform meshesare used in the periodic
direction, the difference equation of (3a) is

.. 1 - 1
ryh"r <LaJak_§>+hT <LaJak+§>

2

1 . 1 . 1
— Az |:ha: <L7‘17k+_> _ha: <L7J?k_ §>:|
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1
o 1
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| 11
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1
. .1
Jwpo+op (1= 5,0k

~ley(i,, k) — ey (i = 1,5, k)] (4)
Since the discrete nodeis on the e¢,, component, the left-sided
h, component of the equation is obtained by taking the av-
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Fig. 3. Yee meshes of single period.

erage of two-sided 4,, components under the condition of uni-
form longitudinal meshes. The corresponding difference equa-
tions of the remained equations (3b)—(d) are similar to (4). As
shown in Fig. 3, according to Floquet’s theorem, ¢, equals e,
and hy equals h,4 if the periodic length is discretized into p
segments along the z-direction; the computational domain is
then restricted to a single period of the structure. When all the
boundary conditions are applied, the guided-wave problem can
be converted into ageneralized eigenvalue problem as follows:

hy hy
B =all ©
ey ey
From (4), it is obvious that matrix B is ablock diagonal matrix
B. 0 --- 0
B= | ®)
: . -0
0 ... 0 B.

where B.. is a square matrix with p rows, and its inverse ma
trix can be obtained analyticaly if the number p of longitudinal
nodes is odd. The resulting inverse matrix has a Toeplitz form
with the first row written as

b.(B;Y)=[1 -1 1 -1 - 1 -1 1. (7

Finally, the generalized eigenvalue problem (5) can be simpli-
fied to a standard matrix eigenvalue problem as

Cx = vx (8

where C = B! A. Hence, we always divide the longitudinal
period into odd segments.

Due to the similarity between finite-difference time-domain
(FDTD) and FDFD methods, many well-established a gorithms
for the FDTD method can be used in the eigenvalue-based
FDFD method to enhance efficiency and accuracy.

A. Nonuniform Orthogonal Grids

Themodeling accuracy of the SIW guided-wave problem can
be further improved by using an orthogonal nonuniform grid.
This allows the geometry to be modeled more accurately than
in the case of a uniform scheme. To apply this technique, the
growth (or scaling) factor of the mesh, i.e., the ratio of spa
tial steps of two adjacent cells, should be kept approximately
below 1.2-1.3 to prevent artificial field discontinuities due to
the abrupt change in cell size [17]. Hence, we make use of the
same B! to simplify the problem. However, the nonuniform
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TABLE |
EIGENVALUE COMPARISON OF CALCULATED SIW PROPAGATION CONSTANTS
BETWEEN LONGITUDINAL SEGMENTS P = 5 AND P = 7 (f = 12 GH2)

Complex propagation constant (y=a +j )

Longitudinal segments p =5
1.1559¢-002 + 6.4005e+002i
6.8991e-003 - 2.8435e+003i
3.5579e-003 + 4.4201e+003i
5.7656e-003 - 1.3341e+004i
5.9631e-003 + 1.7433e+004i

Longitudinal segments p =7
1.1612e-002 + 6.4005e+0021
4.8100e-002 + 2.6623e+003i
6.1284e-002 - 4.0821e+003i
7.5643¢-002 +7.7719e+003i
1.2206e-002 +2.7914e+004i

grid can no longer preserve the second-order accuracy obtained
by the uniform grid. If the mesh spacing changes slowly, the re-
sulting error looks more similar to that of asecond-order method
than that of a first-order counterpart.

B. Locally Conformed FD Technique

The locally conformed FD technique adequately makes use
of the integral form of Maxwell’ s equations for modeling arbi-
trarily shaped curved surfaces [18]. We can also apply such a
technique to the FDFD method to improve the simulation accu-
racy in connection with via-holes.

Sincethenumber of eigenval uesisequal totherank of matrix C
after solving (8), itisimportant toextract real solutionsandgetrid
of pseudosol utions. Themost efficient method wehavefoundisto
solvetheeigenval ue problem twicewith different mesh sizesand
comparethetwo groupsof obtained eigenvalues. If aneigenvalue
remainsthe samein thetwo cases, it isareal solution, otherwise
it will be apseudosolution. The correctness of thisrule has been
shown by numerical experiments. Tablel listsfive eigenval uesof
matrix C whenthelongitudinal segmentsnumber pis5and 7, re-
spectively. The eigenvalue problem isrelated to the propagation
constant of theperiodic SIW,where f = 12GHz,l = 7.112mm,
h = 2mm,s = 2.0mm,d = 0.8 mm, and the relative per-
mittivity of dielectrice, = 10.2, asshowninFig. 1. Real parts
of those sel ected eigenvaluesare mostly closeto zero becausewe
mainly concern the guided-wave problem with less eakage and
loss. From Table | and following therule, v = 1.16e — 02 +
76.40e + 02 isobviously the solution we search for. When the
range of the imaginary part of the propagation constant is de-
fined, however, it is not necessary to solve the problem twice
for extracting the real eigenvalues at different frequencies.

I11. SIMULATION AND MEASUREMENT RESULTS
A. Smulation

The structure under considerationisaperiodic SIW, asshown
in Fig. 1, where only a periodic cell is considered. The other
walls are either perfect electric conductors (PECs) (upper and
bottom planes) or PML absorbing boundaries (lateral). Simula-
tion and measurement results show that the attenuation constant
of the SIW is rather small. Note that the attenuation constant
is too small to be measured accurately. We make use of HFSS
softwareto solve the same problem for the validation of the pro-
posed FDFD method.

The geometry parameters of the SIW in Fig. 1 are set as
[ = 7112mm, A = 2 mm, and d = 0.8 mm, the relative
permittivity ¢,. is 10.2, and frequency is f = 12 GHz. When the
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Fig. 5. Comparison between the phase-constant results obtained from the
FDFD method and the HFSS software with 11 periods.

via-spacing s changesfrom 2.0to 4.0 mm, theinsertion lossand
phase constant of the SIW have been cal culated using the HFSS
software, where 11 periods are considered in the calculations.
The comparison of the attenuation constant obtained from the
FDFD method and HFSS is illustrated in Fig. 4. Clearly, sm-
ulation results from the two methods are in very good agree-
ment. Numerical results of the phase constant obtained by the
two techniques are shown in Fig. 5, which also illustrates agood
agreement. When applying HFSS to simulate an SIW, we cal-
culate the propagation constant as a determinate problem with
an excitation, and the higher order modes resulting from port
discontinuity cause the additional loss. Asaresult, theinsertion
loss based on HFSS is dlightly larger than that from the pro-
posed FDFD method. Thedistribution of thevector electricfield
drawn by HFSSisshownin Fig. 6. It isobserved that the energy
ismainly restricted between the two rows of holes. With the pro-
posed FDFD method, the typical computation timeisonly 5 to
7 min, while the CPU time for HFSS simulation is usually over
30 min. In the meantime, the memory requirement in HFSS is
much more than the proposed technique.
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B. Experiment

In the measurement setup, the dimensions of the SIW geom-
etry arechosenas! = 7.112mm, d = 0.8 mm, s = 1.5 mm, and
h = 2 mm, and the relative permittivity of dielectric substrate
is10.2, as shown in Figs. 1 and 7. In Fig. 7, parts I;, and I
are taper rectangular waveguides in highness, which act as the
adapters between the SIW and K a-band standard waveguide of
size 7.112 mm x 3.556 mm, and the middle part is denoted as
I; or I,. Part I; or Part I, are connected with Parts I, and Ir
by the mounting flanges, as shown in Fig. 7.

Part I; SIW, synthesized with linear arrays of metallized
via-holes on alow-loss substrate covered by metal-
lized walls, as shown in Fig. 1.

Part I Rectangular waveguide filled with the same

medium as the SIW substrate. Its basic geom-
etry parameters are 7.112 mm x 2 mm.

The experiments are performed in the frequency range of
26.5-40 GHz. Since Part I, isaconventional rectangular wave-
guide with a reduced height, the inherent phase values of the
experimental system at various frequencies can be obtained by
measuring the scattering S parameters of Part /5. In the mea
surement, we first insert Part I, between Parts I, and I, and
the S-parameters are measured to calibrate the system error.
Then insert Part 7; to measure the .S-parameters of the SIW.
Sincethe attenuation constant isvery small, only phase constant
3, 1.e., theimaginary part of the propagation constant ~, can be
derived from the measured S-parameter data.

2225

2300

o
//
A

2250
2200
2150 -

2100

B (rad/m)

2050

/ SIW e=10.2
—A—measured,
and system error is considered

/ —%—caiculated

1900 r : = . = = .
30 7 34 36

frequency (GHz)

2000 -

1950

Fig. 8. Simulation results of the FDFD method and measurement results of
the SIW after calibration.

The SIW is measured at ten frequencies, and the compar-
ison of measurement results with numerical simulations from
the proposed FDFD method is shown in Fig. 8. It can be seen
that the numerical results are in good agreement with the exper-
iment results.

IV. CONCLUSION

An FDFD agorithm has been presented for the efficient mod-
eling of guided-wave propertiesof an SIW. Simulation and mea-
surement results have validated the proposed numerical mod-
eling scheme, which is suitable to solve arbitrary complex open
periodic guided-wave problems. Both simulation and experi-
mental results have shown that the performance of the SIW is
very similar to that of a conventional waveguide (such as with
a high-@ factor). The concepts of substrate integrated circuits
(ISCs) including an SIW can be anticipated for the future design
and devel opment of low-cost millimeter-wave |Cs and systems.

APPENDIX
From (2e) and (2f), we obtain
1 Oey
" = e ot O -
1 de
gy = ————— - =, A2
Y jwpe + o Ay (A7)
Combining (A1) and (A2) yields
hkz;%_;% (A3)
Jwpo + oy jwpo +oi Oz
Substituting (A3) into (2j) and (2g), we have
1
Cyx = — =, ~
Jwey + ax(y)
1 FPe. 1 9%ey
Jwpo + o 0xdy  jwpo + ok Ox?
(A4)
1
Ca:y - T~
Jjweg + oy(x)
1 2e, 1 Ze,
< .862,,_' .8(3J>.(A5)
Jwpo + 0ok Oy jwpo +ok dxdy

From (A4) and (2i), one obtains (3a). Similarly, from (A5) and
(2h), we can get (3b).



2226

Simplifying (2k) and (21), we have

1 dh,
Cee = jwe. +04(2) Ox (A6)
1 Ohy
=Y A7
=y Jwe, +oyu(z) Oy (A7)
Combining the two equations yields
1 oh, 1 oh,
- - M= 2 %M (a8
Jwe, +oy(z) Oy + jwe, +o,(2) Oz (A8)
Substituting (A8) into (2d) and (2a), we have
1
hye = —
Jwio + 05
1 9?h,, 1 d?h,
. — J’_ .
Jjwe. +oy(z) 0z0y  jwe. +o0.(z) Ox?
, (A9)
Mgy = —————
! Jwito + 7
B 1 9%h, 1 82hy
Jwe. +oy(z) Oy?  jwe.+o0.(z) Oxdy)’
(A10)

From (A9) and (2c), (3c) can be obtained. Similarly, from (A10)
and (2b), (3d) can be obtained.
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